

A Report On The Calculation Of The Excited States Of 1_4 _Phx_nap_phx At The PBE0/6-31G** Level

osl - 16^{th} July 2025

Abstract

The calculation of excited states for the system '1_4_Phx_nap_phx' is presented, accompanied by automated analysis and image generation provided by the Digichem software package. The calculations were performed using the Turbomole software package(s) at the PBE0/6-31G** level of theory. The total self-consistent field (SCF) energy of the system was found to be -42643.47 eV after 1 step. The highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) were calculated to be -5.04 and -1.74 eV respectively, corresponding to a HOMO-LUMO band gap of 3.30 eV. The permanent dipole moment (PDM) was calculated to be 0.96 D. In total, 20 excited states were calculated with singlet and triplet multiplicity. The most intense absorption peaks were calculated to be at 285, 347 and 473 nm. The lowest energy singlet and triplet excited states (S₁ and T₁) were calculated to be 2.42 and 2.41 eV (512 and 514 nm) respectively, corresponding to a singlet/triplet splitting energy ($\Delta E_{\rm ST}$) of 0.01 eV.

Table 1: Summary of overall calculation metadata.											
Calculation no.	Date ^[a] (Duration ^[b])	CPUs (Memory)	Success (Converged)	Computational package	Level of theory	Solvent (model)	Calculations	Wavefunction	Multiplicity	Т ^[с] / К	P ^[d] / atm
Combined	16/07/2025 09:56:48 (7 m, 33 s)	28 (53993275392 B)	True (N/A)	Turbomole (7.5.0)	PBE0/6-31G**	Gas- phase (N/A)	Excited States	restricted	1 (singlet)	N/A	N/A
1	16/07/2025 09:49:03 (3 m, 58 s)	14 (26996637696 B)	True (N/A)	Turbomole (7.5.0)	PBE0/6-31G**	Gas- phase (N/A)	Excited States	restricted	1 (singlet)	N/A	N/A
2	16/07/2025 09:56:48 (3 m, 35 s)	14 (26996637696 B)	True (N/A)	Turbomole (7.5.0)	PBE0/6-31G**	Gas- phase (N/A)	Excited States	restricted	1 (singlet)	N/A	N/A

[a]: The date and time at which the calculation was completed. [b]: Total combined duration in real-time (wall-time) for all components of the calculation. [c]: Temperature used for thermochemistry analysis. [d]: Pressure used for thermochemistry analysis.

Summary Of Results

SCF Energy

Table 2: Summary of SCF energy properties.					
No. of steps	1				
Final energy	-42643.4651 eV				
Final energy	-4,114,469 kJ·mol ⁻¹				

Geometry

Table 3: Summary of geometry properties.						
Formula	$C_{34}H_{22}N_2O_2$					
SMILES	c1ccc2c(c1)Oc1ccccc1N2c1ccc(N2 c3ccccc3Oc3ccccc32)c2ccccc12					
Molar mass	490.5507 g·mol⁻¹					
Alignment method	Minimal					
X extension	13.66 Å					
Y extension	9.25 Å					
Z extension	6.79 Å					
Linearity ratio	0.32					
Planarity ratio	0.27					

Molecular Orbitals

Table 4: Summary of HOMO & LUMO propertie					
E _{HOMO,LUMO}	3.30 eV				
E _{HOMO}	-5.04 eV				
E _{LUMO}	-1.74 eV				

Permanent Dipole Moment

Table 5: Summary of the permanent dipole moment properties.						
Total	0.96 D					
X axis angle	90.00 °					
XY plane angle	90.00°					

S₁ Transition Dipole Moment

Table 6: Summary of the transition (S_1) dipole moment (TDM) properties μ : Electric TDM. m: Magnetic TDM. $\theta_{\mu,x}$ and $\theta_{m,x}$: Angle between μ or m and the x-axis. $\theta_{\mu,xy}$ and $\theta_{m,xy}$: Angle between μ or m and the xy-plane. $\theta_{\mu,m}$: Angle between the electric and magnetic TDM. g_{lum} : Dissymmetry factor.

μ	0.03 D
θ _{μ,x}	89.90 °
θ _{μ,xy}	0.00 °
m ^[d]	0.26 a.u.
θ _{m,x}	0.00 °
θ _{m,xy}	0.00 °
μ (Gaussian-CGS)	2.55e-20 esu∙cm
m (Gaussian-CGS)	2.42e-21 erg·G ⁻¹
θ _{μ,m}	89.90 °
$\cos(\theta_{\mu,m})$	0.00
g _{lum}	0.001

Excited States

Table 7: Summary of the calculated excited states. E_x : The energy of excited state x. λ_x : The wavelength of a photon of equivalent energy to excited state x. f_x : The oscillator strength of the excited state transition x. ΔE_{xy} : The difference in energy between the lowest excited states of multiplicity x and y.

No. calculated singlets	10
E _{s1}	2.42 eV
λ _{S1} (colour, CIE)	512 nm (Green 🗖, (0.02, 0.78))
f _{s1}	< 0.01
No. calculated triplets	10
E _{T1}	2.41 eV
λ _{T1} (colour, CIE)	514 nm (Green 🗖, (0.04, 0.81))
f _{T1}	< 0.01
ΔE _{ST}	0.01 eV
Simulated Absorption Peaks	285, 347 and 473 nm

Methodology

Metadata

This report was generated from the combined results of two individual calculations. The individual metadatas for each separate calculation are presented in the following sections, and the overall calculation was performed using the **Turbomole** (7.5.0) program, the DFT method with the PBE0 functional and the 6-31G** basis set. It was completed on the 16th July 2025 after a total duration of 7 m, 33 s and finished successfully. The base multiplicity of the system under study was 1 (singlet). Finally, a restricted wavefunction was used, resulting in a single set of doubly occupied orbitals. The full calculation metadata is tabulated in table 1.

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **DFT** method with the **PBE0** functional and the **6-31G**** basis set. It was completed on the **16th July 2025** after a total duration of **3 m**, **58 s** and **finished successfully**. The base multiplicity of the system under study was **1 (singlet)**. Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals.

The calculation of the excited states was performed using the **Turbomole (7.5.0)** program, the **DFT** method with the **PBE0** functional and the **6-31G**** basis set. It was completed on the **16th July 2025** after a total duration of **3 m**, **35 s** and **finished successfully**. The base multiplicity of the system under study was **1 (singlet)**. Finally, a **restricted wavefunction** was used, resulting in a single set of doubly occupied orbitals.

Analysis

The report presented here was generated using the Digichem software package. This toolset relies upon a number of thirdparty applications and libraries which should be cited appropriately in derivative works. In particular, the calculation results described within were parsed by the cclib library.¹ Scientific constants which were used, among other things, for the interconversion of scientific units were provided by SciPy.² Commission internationale de l'éclairage (CIE) coordinates, along with visual representations of the equivalent colour, were calculated using the Colour Science library.³ Three-dimensional plots of atom positions and calculated densities, including molecular orbitals, were rendered using Visual Molecular Dynamics $(VMD)^4$ and the Tachyon ray-tracer.⁵ Finally, twodimensional graphs were plotted using the MatPlotlib library,⁶ while this report itself was prepared using the Mako template library⁷ and the Weasyprint library⁸, the latter of which was responsible for generation of the PDF file.

Discussion

Total SCF Energy

The total energy of the system was calculated at the **self-consistent field (SCF)** level, corresponding to the energy calculated by the density-functional theory (DFT) method, with a value of -42643.47 eV, corresponding to -4,114,469 KJmol⁻¹. A plot of the total SCF electron density is shown in figure 1.

Figure 1: Plot of the total SCF electron density, plotted with an isovalue of 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Geometry

Figure 2: Labelled structure of 1 4 Phx nap phx.

The **empirical formula** of the studied system was $C_{34}H_{22}N_2O_2$, corresponding to a **molecular mass** of 490.55 gmol⁻¹. The molecular structure, with atom labelling, is shown in figure 2. The molecular geometry was aligned to the cartesian (X, Y and Z) axes by the **Minimal (MIN)** method, and the resulting atomic position are displayed in figure 3. Using this method, the **extent of the molecular system** in the X, Y and Z axes (L_X , L_Y and L_Z , corresponding to the molecular width, length and height respectively) was determined to be 13.66, 9.25 and 6.79 Å

respectively. These extensions give rise to a **molecular linearity ratio** $(1-(L_Y/L_X))$ and **planarity ratio** $(1-(L_X/L_Y))$ of 0.32 and 0.27 respectively.

Figure 3: The molecular structure, aligned using the Minimal (MIN) method. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Permanent Dipole Moment

The calculated **permanent dipole moment** was 0.96 D, with a vector (x,y,z) of -0.00, 0.00, 0.96 D. The angle between the dipole moment vector and the x-axis was 90.00 °, while the angle between the dipole moment and the xy-plane was 90.00 °. A plot of the permanent dipole moment is shown in figure 4.

Figure 4: The permanent dipole moment (red arrow) plotted against the aligned molecular geometry with a scale of 1 Å = 1.0 D. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Transition (S₁) Dipole Moment

The calculated **electric (TEDM, \mu)** and **magnetic (TMDM, m)** transition dipole moments between the ground state and the S₁ excited state were 0.03 D and 0.26 au respectively. The corresponding vector components (x,y,z) were μ = -0.00, -0.03, 0.00 D and m = 0.26, 0.00, 0.00 au. In comparison to the molecular geometry, the angle between each dipole moment and the longest axis of the molecule (the x-axis) was $\theta_{\mu,x}$ = 89.90 °

and $\theta_{m,x} = 0.00$ °, while the angle between each dipole moment and the xy-plane was $\theta_{\mu,xy} = 0.00$ ° and $\theta_{m,xy} = 0.00$ °. In Gaussian-CGS units, in which the magnetic and electric transition dipole moments can be directly compared, the magnitude of each dipole moment was $\mu = 2.55e-20$ esu·cm and m = 2.42e-21 erg·G⁻¹, while the **angle between the two dipole moments** was $\theta_{\mu,m} = 89.90$ °. Correspondingly, the cosine of the angle was $\cos(\theta_{\mu,m}) = 0.00$, and the **dissymmetry factor** of the excited state transition was $g_{lum} = 0.001$. A plot of the electric and magnetic transition dipole moments is shown in figure 5.

Figure 5: The electric (red arrow) and magnetic (green arrow) transition (S_1) dipole moment plotted against the aligned molecular geometry with a scale of 1 Å = 1.0 D = 0.1 au. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Molecular Orbitals

In total, 642 doubly occupied molecular orbitals were calculated, divided into 128 occupied orbitals and 514 unoccupied (or virtual) orbitals. The calculated energies of the **HOMO and LUMO** were -5.04 and -1.74 eV respectively, corresponding to a **HOMO-LUMO band gap** of 3.30 eV (figure 20). Plots of the orbital density for the HOMO-4, HOMO-3, HOMO-2, HOMO-1, HOMO, LUMO, LUMO+1, LUMO+2, LUMO+3, LUMO+4, LUMO+5, LUMO+6 and LUMO+7 are shown in figures 6-11 and 13-19 respectively, while the orbital overlap between the HOMO and LUMO is shown in figure 12.

Figure 20: Graph of the calculated molecular orbital energies in close proximity to the HOMO-LUMO gap. Solid lines: occupied orbitals, dashed lines: virtual orbitals.

Figure 6: Orbital density plots of the HOMO-4, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 7: Orbital density plots of the HOMO-3, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 8: Orbital density plots of the HOMO-2, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 9: Orbital density plots of the HOMO-1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 10: Orbital density plots of the HOMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 11: Orbital density plots of the LUMO, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 12: Orbital density plots of the HOMO (red) and LUMO (blue), plotted simultaneously with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 13: Orbital density plots of the LUMO+1, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 14: Orbital density plots of the LUMO+2, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 15: Orbital density plots of the LUMO+3, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 16: Orbital density plots of the LUMO+4, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 17: Orbital density plots of the LUMO+5, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 18: Orbital density plots of the LUMO+6, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Figure 19: Orbital density plots of the LUMO+7, plotted with isovalue: 0.02. A: In the X/Y plane, B: In the X/Z plane, C: In the Z/Y plane, D: 45° to the axes.

Excited States

In total, the energies of 20 electronic excited states were calculated (figure 21), consisting of 10 states with a multiplicity of singlet and 10 of multiplicity triplet. The energy of the lowest **singlet excited state** (**S**₁) was 2.42 eV, corresponding to absorption by a photon with a wavelength of 512 nm, a green 'color' and CIE coordinates of (0.02, 0.78), while the energy of the **T**₁ was 2.41 eV (514 nm, green). CIE: (0.04, 0.81)). The difference in energy between the S₁ and T₁ excited states (ΔE_{ST}) was therefore 0.01 eV. A complete table of the calculated excited state properties is available in table 8. In addition, an electronic transition spectrum was simulated using a gaussian function with full-width at half maximum (FWHM) of 0.40 eV, from which the **three most intense peaks** were found at 285, 347 and 473 nm. The full simulated absorption spectrum is shown in figure 22.

Figure 21: Graph of the calculated excited states. f: oscillator strength of the relevant ground to excited state transition.

Figure 22: Graph of the simulated absorption spectrum. Excited states are shown as vertical black lines, while peaks simulated with a gaussian function with FWHM: 0.40 eV are shown as a blue line. Peaks can be found at: 285, 347 and 473 nm.

Tables Of Results

Atom Coordinates

Table 9: Coordinates of the atoms of the system under study, as aligned to the cartesian axes by the Minimal method. Atoms that are chemically equivalent have been assigned the same group number.s

have bee	n assigned th	ie same gro	up number.s			F 1	ы	тт
Index	Element	Group	X Coord /Å	Y Coord /Å	Z Coord /Å	51 52	н С	н ₁ С
1	С	с ₁	-0.6924000	-0.0000100	3.3249400			С ₁
2	С	C ₂	-1.3815300	-0.0000100	2.1132400	53 54	н н	н ₁
3	С	C3	-0.7089500	0.0000000	0.8684400		н	H
4	С	C ₃	0.7089500	0.0000000	0.8684300	55		н ₁
5	С	C ₂	1.3815400	-0.0000100	2.1132400	56	H	H ₁
6	С	С ₁	0.6924100	-0.0000100	3.3249400	57	N	N ₁
7	Н	H ₁	-1.2418600	-0.0000200	4.2621100	58	0	0 ₁
8	Н	H ₂	-2.4696600	-0.0000100	2.1485900	59	0	0 ₁
9	С	C ₄	-1.4025500	0.0000000	-0.3765700	60	Ν	N ₁
10	С	C ₄	1.4025500	0.0000000	-0.3765800			
11	Н	H ₂	2.4696600	-0.0000100	2.1485800	Molecu	lar Orl	oitals
12	Н	H ₁	1.2418800	-0.0000200	4.2621000	T-11- 10		641
13	С	C ₅	0.6946900	0.0000100	-1.5895900	Table 10: I Level		of the ca Label
14	С	С ₅	-0.6946900	0.0000100	-1.5895900	144		MO+15
15	Н	H ₅	1.2365800	0.0000100	-2.5324900	144		
16	Н	ь Н ₅	-1.2365900	0.0000100	-2.5324900			MO+14 MO+13
17	С	с ₆	3.5807400	1.2261000	-0.3748500	142		
18	С	C ₆	3.5807400	-1.2260900	-0.3748400	141		MO+12
19	C	с ₇	2.9650900	2.4897200	-0.3511000	140		MO+11
20	C	C ₈	4.9830400	1.1776300	-0.3181000	139		MO+10
21	C	C ₈	4.9830400	-1.1776200	-0.3181000	138		JMO+9
22	C	С ₇	2.9650900	-2.4897100	-0.3510900	137		JMO+8
23	C	С ₉	3.7255000	3.6601000	-0.2605100	136		JMO+7
24	Н	H ₇	1.8833700	2.5844000	-0.3901800	135		JMO+6
25	C	C ₁₀	5.7445300	2.3474700	-0.2338700	134		JMO+5
26	C	C ₁₀	5.7445300	-2.3474600	-0.2338600	133		JMO+4
27	н	0 ₁₀ Н ₇	1.8833700	-2.5844000	-0.3901700	132		JMO+3
28	C	,	3.7255000	-3.6601000	-0.2604900	131		JMO+2
29	С	C ₉	5.1145000	3.5890200	-0.2004900	130		JMO+1
30	н	С ₁₁ н	3.2280700	4.6264200	-0.2313900	129		LUMO
31	н	Н ₉	6.8282000	2.2861500	-0.1850100	128		юмо
		н ₁₀				127		OMO-1
32	С	С ₁₁	5.1145000	-3.5890200	-0.2003500	126		OMO-2
33	Н	н ₁₀	6.8282000	-2.2861500	-0.1850000	125	Н	OMO-3
34	Н	Н ₉	3.2280700	-4.6264200	-0.2313700	124	Н	OMO-4
35	Н	н ₁₁	5.7050300	4.4981800	-0.1242400	123	Н	OMO-5
36	Н	н ₁₁	5.7050300	-4.4981700	-0.1242200	122	Н	OMO-6
37	С	с ₆	-3.5807400	1.2261000	-0.3748300	121	Н	OMO-7
38	С	C ₆	-3.5807400	-1.2260900	-0.3748500	120	Н	OMO-8
39	С	C ₇	-2.9650900	2.4897200	-0.3510800	119	Н	OMO-9
40	С	C ₈	-4.9830500	1.1776200	-0.3180700	118	H	OMO-10
41	С	C ₈	-4.9830400	-1.1776200	-0.3180900	117	H	DMO-11
42	С	C ₇	-2.9650900	-2.4897100	-0.3511200	116	H	OMO-12
43	С	C ₉	-3.7255000	3.6601000	-0.2604700	115	H	ОМО-13
44	Н	H ₇	-1.8833700	2.5844000	-0.3901600	114	H	ОМО-14
45	С	C ₁₀	-5.7445300	2.3474700	-0.2338300	113	H	DMO-15

46	С	C	-5.7445300	-2.3474700	-0.2338700
40	C	C ₁₀	-5./445500	-2.34/4/00	-0.2336/00
47	Н	H ₇	-1.8833700	-2.5844000	-0.3902000
48	С	C ₉	-3.7254900	-3.6601000	-0.2605300
49	С	C ₁₁	-5.1145000	3.5890200	-0.2003200
50	Н	H_9	-3.2280700	4.6264200	-0.2313500
51	Н	H ₁₀	-6.8282000	2.2861500	-0.1849700
52	С	C ₁₁	-5.1145000	-3.5890200	-0.2003800
53	Н	H ₁₀	-6.8282000	-2.2861500	-0.1850000
54	Н	H_9	-3.2280600	-4.6264200	-0.2314300
55	Н	H ₁₁	-5.7050300	4.4981700	-0.1241800
56	Н	H ₁₁	-5.7050300	-4.4981800	-0.1242600
57	Ν	N ₁₂	-2.8391600	0.0000000	-0.4303400
58	0	0 ₁₃	5.6952200	0.0000000	-0.3258600
59	0	0 ₁₃	-5.6952200	0.0000000	-0.3258400
60	Ν	N ₁₂	2.8391600	0.0000000	-0.4303500

s

4.262100	0 Table 10: Er	nergies of the calculate	ed molecular orbitals.	
-1.589590	00 Level	Label	Symmetry	Energy /eV
-1.589590	00 144	LUMO+15	А	2.8871
2.532490	00 143	LUMO+14	А	2.8614
2490	00 142	LUMO+13	А	2.4551
874850	00 141	LUMO+12	А	2.2792
34(00 140	LUMO+11	А	2.1711
100	00 139	LUMO+10	А	1.1530
100	138	LUMO+9	А	1.1501
	00 137	LUMO+8	А	0.5075
)(00 136	LUMO+7	А	0.1793
1(00 135	LUMO+6	А	0.1691
)18(00 134	LUMO+5	А	0.1587
870	00 133	LUMO+4	А	0.1058
6	00 132	LUMO+3	А	-0.1277
17(00 131	LUMO+2	А	-0.2045
9490	00 130	LUMO+1	А	-0.6050
(00 129	LUMO	Α	-1.7421
39(00 128	номо	Α	-5.0413
010	00 127	HOMO-1	А	-5.0647
35(00 126	HOMO-2	А	-6.4170
5000	00 125	HOMO-3	А	-6.4945
370	00 124	HOMO-4	А	-6.4947
4	00 123	HOMO-5	А	-7.2227
220	00 122	HOMO-6	А	-7.2743
83	00 121	HOMO-7	А	-7.2858
850	00 120	HOMO-8	А	-7.3122
8(00 119	HOMO-9	А	-7.5818
3070	00 118	HOMO-10	А	-8.3405
8090	00 117	HOMO-11	А	-8.9574
112	00 116	HOMO-12	А	-8.9927
60470	00 115	HOMO-13	А	-9.3321
016	00 114	HOMO-14	А	-9.4421
383(00 113	HOMO-15	А	-9.6151

Excited States

	-			ted excited states.	Colour (CIE)	Oppillator Stree att	Transitions (Deskahille)
Number	Symbol	Symmetry	Energy /eV	Wavelength /nm	Colour (CIE x,y)	Oscillator Strength	Transitions (Probability)
1	Т1	Triplet-A	2.4102	514.42	Green [] (0.04, 0.81)	< 0.0001	HOMO → LUMO (0.99)
2	s_1	Singlet-A	2.4228	511.75	Green 🔤 (0.02, 0.78)	< 0.0001	HOMO → LUMO (0.99)
3	Т2	Triplet-A	2.4315	509.91	Green 🔤 (0.01, 0.75)	< 0.0001	HOMO-1 → LUMO (0.99)
4	s_2	Singlet-A	2.4450	507.09	Green 🔤 (0.01, 0.70)	< 0.0001	HOMO-1 → LUMO (0.99)
5	T ₃	Triplet-A	2.5998	476.89	Cyan 🔤 (0.10, 0.10)	0.3390	HOMO-2 → LUMO (0.93)
6	T ₄	Triplet-A	3.0523	406.20	Violet 🔤 (0.17, 0.00)	< 0.0001	HOMO-1 → LUMO+2 (0.42) HOMO → LUMO+3 (0.31) HOMO → LUMO+1 (0.17) HOMO-7 → LUMO+9 (0.02)
7	T ₅	Triplet-A	3.0534	406.05	Violet 🔤 (0.17, 0.00)	0.0215	HOMO → LUMO+2 (0.43) HOMO-1 → LUMO+3 (0.30) HOMO-1 → LUMO+1 (0.16) HOMO-7 → LUMO+10 (0.02)
8	T ₆	Triplet-A	3.5441	349.83	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO → LUMO+1 (0.35) HOMO-1 → LUMO+4 (0.28) HOMO → LUMO+6 (0.18) HOMO → LUMO+3 (0.13)
9	T ₇	Triplet-A	3.5513	349.12	Ultraviolet (0.00, 0.00)	1.4802	HOMO-1 → LUMO+1 (0.32) HOMO → LUMO+4 (0.31) HOMO-1 → LUMO+6 (0.19) HOMO-1 → LUMO+3 (0.12)
10	T ₈	Triplet-A	3.5821	346.13	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO → LUMO+5 (0.49) HOMO-1 → LUMO+7 (0.46)
11	T_9	Triplet-A	3.5823	346.10	Ultraviolet (0.00, 0.00)	0.0038	HOMO → LUMO+7 (0.47) HOMO-1 → LUMO+5 (0.47)
12	s ₃	Singlet-A	3.6369	340.91	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO \rightarrow LUMO+1 (0.94)
13	s_4	Singlet-A	3.6629	338.49	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO-1 \rightarrow LUMO+1 (0.92)
14	T ₁₀	Triplet-A	3.7928	326.89	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO → LUMO+1 (0.46) HOMO → LUMO+6 (0.26) HOMO-1 → LUMO+4 (0.19)
15	S_5	Singlet-A	3.9326	315.27	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO-1 → LUMO+2 (0.48) HOMO → LUMO+3 (0.44)
16	s ₆	Singlet-A	3.9342	315.15	Ultraviolet (0.00, 0.00)	0.0441	HOMO → LUMO+2 (0.51) HOMO-1 → LUMO+3 (0.39)
17	S ₇	Singlet-A	4.0276	307.84	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO-4 → LUMO (0.99)
18	S ₈	Singlet-A	4.0289	307.73	Ultraviolet (0.00, 0.00)	< 0.0001	HOMO-3 → LUMO (0.99)
19	S ₉	Singlet-A	4.3181	287.13	Ultraviolet 🔤 (0.00, 0.00)	< 0.0001	HOMO-1 → LUMO+4 (0.43) HOMO → LUMO+6 (0.34) HOMO → LUMO+3 (0.07) HOMO-4 → LUMO+2 (0.06) HOMO-3 → LUMO+3 (0.04)
20	s ₁₀	Singlet-A	4.3288	286.42	Ultraviolet 🔤 (0.00, 0.00)	0.2499	HOMO → LUMO+4 (0.45) HOMO-1 → LUMO+6 (0.29) HOMO-1 → LUMO+3 (0.08) HOMO-3 → LUMO+2 (0.07) HOMO-4 → LUMO+3 (0.05)

Transition Dipole Moments

Table 11: Properties of the calculated transition dipole moments. [a]: The electric transition dipole moment (TEDM), in Debye (D). [b]: Angle between the TEDM and the x-axis of the molecule. [c]: Angle between the TEDM and xy-plane of the molecule. [d]: The magnetic transition dipole moment (TMDM), in atomic units (au). [e]: Angle between the TMDM and the x-axis of the molecule. [f]: Angle between the TMDM and xy-plane of the molecule. [g]: The TEDM, in Gaussian CGS (centimetre, gram, second) units. [h]: The TMDM, in Gaussian CGS (centimetre, gram, second) units. [i]: The angle between the electric and magnetic transition dipole moments, in Gaussian CGS units. [k]: The dissymmetry factor of the transition dipole moment.

Excited State	µ ^[a] Vector /D	μ ^[a] /D	θ _{μ,x} /	θ _{μ,xy} /	m ^[d] Vector /au	m ^[d] /au	θ _{m,x} [e] /	θ _{m,xy} /	µ ^[g] ∕esu∙cm	m ^[h] /erg·G ⁻¹	θ _{μ,m} [i] /	$\cos(\theta_{\mu,m})^{[j]}$	g _{lum} ^[k]
T ₁	-0.00, -0.03, 0.00	0.03	89.65	0.02	0.28, 0.00, 0.00	0.28	0.00	0.00	2.68e-20	2.58e-21	89.65	0.01	0.002
s_1	-0.00, -0.03, 0.00	0.03	89.90	0.00	0.26, 0.00, 0.00	0.26	0.00	0.00	2.55e-20	2.42e-21	89.90	0.00	0.001
T ₂	0.00, 0.00, -0.00	< 0.01	18.54	2.01	-0.00, 0.00, 0.06	0.06	89.75	89.75	7.24e-23	5.82e-22	87.75	0.04	0.019

s_2	-0.00, -0.00, 0.00	< 0.01	48.19	19.47	0.00, 0.00, -0.01	0.01	88.90	88.90	3.05e-23	1.32e-22	69.75	0.35	0.303
Т3	5.86, 0.00, 0.00	5.86	0.00	0.00	0.00, 0.37, 0.00	0.37	90.00	0.00	5.86e-18	3.46e-21	90.00	-0.00	-0.000
T_4	0.00, -0.04, 0.00	0.04	89.94	0.03	-0.01, 0.00, -2.58	2.58	89.88	89.88	3.96e-20	2.39e-20	89.97	0.00	0.001
Т5	0.00, 1.36, 0.00	1.36	90.00	0.00	0.18, 0.00, -0.08	0.19	23.12	23.12	1.36e-18	1.78e-21	90.00	-0.00	< 0.001
т ₆	0.00, -0.01, -0.00	0.01	89.69	0.23	-0.00, 0.00, 4.95	4.95	89.99	89.99	1.13e-20	4.59e-20	89.77	0.00	0.004
T ₇	-0.00, 10.48, -0.00	10.48	90.00	0.00	0.44, 0.00, 0.01	0.44	0.71	0.71	1.05e-17	4.10e-21	90.00	0.00	< 0.001
Т8	-0.04, -0.00, 0.01	0.04	19.02	19.01	0.00, 0.25, -0.00	0.25	90.00	0.19	3.80e-20	2.29e-21	89.21	0.01	0.003
Т9	-0.00, -0.00, -0.53	0.53	89.90	89.78	0.00, 0.01, -0.00	0.01	90.00	2.73	5.27e-19	5.34e-23	92.53	-0.04	< 0.001
s ₃	0.00, 0.00, -0.00	< 0.01	39.79	19.23	0.00, 0.00, -1.53	1.53	90.00	90.00	2.32e-23	1.42e-20	109.23	-0.33	-0.002
S_4	0.00, 0.04, 0.00	0.04	90.00	0.00	-0.07, 0.00, 0.00	0.07	0.92	0.92	3.83e-20	6.30e-22	90.00	0.00	0.000
T ₁₀	-0.00, 0.01, 0.00	0.01	89.76	0.97	0.00, 0.00, -3.60	3.60	90.00	90.00	7.21e-21	3.34e-20	89.03	0.02	0.014
s_5	0.00, -0.03, -0.00	0.03	89.91	0.01	-0.00, 0.00, -2.08	2.08	89.94	89.94	2.92e-20	1.93e-20	90.01	-0.00	< 0.001
s ₆	0.00, 1.72, 0.00	1.72	90.00	0.00	0.13, 0.00, -0.04	0.14	14.98	14.98	1.72e-18	1.27e-21	90.00	0.00	< 0.001
S_7	0.00, -0.00, -0.00	< 0.01	72.18	4.39	0.00, 0.00, 0.04	0.04	89.24	89.24	1.66e-22	3.81e-22	85.85	0.07	0.106
s ₈	-0.00, 0.04, 0.00	0.04	89.96	0.03	-0.12, 0.00, 0.00	0.12	0.00	0.00	3.77e-20	1.10e-21	90.04	-0.00	< 0.001
s ₉	0.00, 0.00, 0.00	< 0.01	86.36	0.30	0.00, 0.00, -0.86	0.86	90.00	90.00	2.40e-21	8.01e-21	89.70	0.01	0.006
S ₁₀	0.00, 3.90, -0.00	3.90	89.98	0.00	0.05, 0.00, 0.00	0.05	0.64	0.64	3.90e-18	4.52e-22	90.02	-0.00	< 0.001

References

- N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839--845
- P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, *Nature Methods*, 2020, **17**, 261--272
- T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33-38
- 5. J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- 7. M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- 8. K. Community, https://weasyprint.org, (accessed May 2020)